

SPECIFICATIONS

Protocol: Synchronous.
Speed: 1,200 to 19,200 bps.
Range: Up to 11 miles (17.7 km)
Surge Protection: 600 W power dissipation at 1 msec . and response time less than 1 picosecond.

Control Signals: RTS/CTS delay of 7 or 53 msec.; Carrier continuous or Controlled by RTS; DCD turns "ON" after recognizing the receive signal

Clocking: Internal, External, or loopback derived from the receive signal.
Operation: 4-wire unconditioned twisted-pair, full- or half-duplex
Connectors: (1) DB25 male or female; (1) 5 -screw terminal block.
Transmit Level: -6 dBm
RTS/CTS Delay: 7 or 53 msec
Power: No power required; uses ultra-low power (at least 6 volts required) from EIA data and control signals: Pins 2,4,9 and 20

DESCRIPTION

The Sync SHM-NPR MP features surface-mount technology and a custom VLSI chip. It supports up to 12 drops and is powered by data only. It operates at speeds from 1,200 bps to $19,200 \mathrm{bps}$. The unit has the best speed-to-distance ration of any available data-powered sync SHM--11 miles (17.7 km) at low data rates and 4 miles (6.4 km) at 19,200 bps over two 22-AWG twisted-pair wires (conservatively rated).
The SHM-NPR operates at full- or half-duplex and uses three clocking methods: internal, external, and received loopback. It's also transformer-isolated for ground-loop protection. You can select RTS/CTS delay of 7 or 53 msec , and carrier status of constantly ON or RTS-controlled CONFIGURATION:

The Sync SHM-NPR MP has seven configuration switches, which allow selection of carrier control method, clocking method, RTS/CTS delay, and data rate. This section describes switch locations and explains all possible switch configurations
For you convenience, all configuration switches are located on a SIP (single in-line package) mounted on the PC board. The figure to the left shows the location of the SIP on the board.

WITCH SETTINGS:

All possible settings for the Sync SHM-NPR's configuration switches are presented in the table below.
Switch 2: Carrier Enable: Use switch 2 to specify how the carrier signal is raised. In most point-to-point, full-duplex applications, the carrier signal can remain constantly "high". In a multi-point environment, contention for the line is controlled by RTS.
$\frac{\text { Switch } 2}{\text { ON Setting: }}$

ON Constant Carrier (Default)
OFF Controlled by RTS
Switches 3 and 4: Transmit Clock: 3 and 4 together to specify the clocking method. The SHM-NPR can provide an internal clock (pin 15), receive an external clock (from pin 24), or loopback a receive clock

Switch 3		Switch 4
ON		Exterting:
ON	OFF	
Oxtlock		
OFF	ON	External Clock
OFF	ON	Internal Clock (Default)
	OFF	Receive Loopback

Switch 5: RTS/CTS Delay: After the host terminal raises a request to send (RTS), the SHM-NPR raises CTS after a slight delay in order to give the remote terminal time to receive an incoming signal. Depending on the type of environment, either a 7 - or $53-\mathrm{msec}$. delay can be selected

$$
\begin{array}{ll}
\frac{\text { Switch } 5}{\text { ON }} & \frac{\text { Setting: }}{7-\mathrm{msec} .} \text { (Default) }
\end{array}
$$

Switches 6, 7, and 8: Data Rate: Switches 6 through 8 are set in combination to allow the SHM-NPR to support data rates from 1,200 to 19,200 bps. The data rate table below shows all the settings

continued on next page

ME729A-M/FSP with Surge Protection

DATA RATE (bps)	Distance Table in miles (km)		
	WIRE GAUGE		
	19 AWG	24 AWG	26 AWG
19,200	$7.5 \mathrm{mi}(12.1 \mathrm{~km})$	$3.5 \mathrm{mi}(5.6 \mathrm{~km})$	$2.5 \mathrm{mi}(4 \mathrm{~km})$
9,600	$10 \mathrm{mi}(16.1 \mathrm{~km})$	$3.5 \mathrm{mi}(5.6 \mathrm{~km})$	$2.5 \mathrm{mi}(4 \mathrm{~km})$
4,800	$10 \mathrm{mi}(16.1 \mathrm{~km})$	$7 \mathrm{mi}(11.2 \mathrm{~km})$	$4 \mathrm{mi}(6.4 \mathrm{~km})$
2,400	$10 \mathrm{mi}(16.1 \mathrm{~km})$	$8.5 \mathrm{mi}(13.7 \mathrm{~km})$	$5 \mathrm{mi}(8 \mathrm{~km})$
1,200	$11 \mathrm{mi}(17.7 \mathrm{~km})$	$8.5 \mathrm{mi}(13.7 \mathrm{~km}))$	$6 \mathrm{mi}(9.7 \mathrm{~km})$

DATA RATE: SWITCHES 6, 7, AND 8			
SETTING	SW-6	SW-7	SW-8
$1,200 \mathrm{bps}$	ON	ON	ON
$2,400 \mathrm{bps}$	ON	ON	OFF
$4,800 \mathrm{bps}$	ON	OFF	ON
$7,200 \mathrm{bps}$	OFF	ON	ON
$9,600 \mathrm{bps}$	ON	OFF	OFF
$14,400 \mathrm{bps}$	OFF	ON	OFF
$19,200 \mathrm{bps}$	OFF	OFF	ON
$19,200 \mathrm{bps}$	OFF	OFF	OFF

INSTALLATION:

Oned the Sync SHM-NPR is properly configured, it is ready to connect to your system. This section tells you how to properly connect the Sync SHM-NPR MP to the twisted-pair and RS-232 interfaces, and how to operate the unit.

Twisted-Pair Connection:
The Sync SHM-NPR supports data-only communication between two RS-232 devices at distances to 11 miles (17.7 km) and data rates to $19,200 \mathrm{bps}$. There are two essential Sync SHM-NPR:

1. These units work in pairs. Therefore, you must have one unit at each end of a two twisted-pair interface
2. To function properly, the Sync SHM-NPR needs two twisted pairs of metallic wire These pairs must be unconditioned, dry metallic wire, between 19 and 26 AWG (the higher number gauges may limit distance somewhat).
Standard dial-up telephone circuits, or leased circuits that run through signal equalization equipment, are not acceptable.
Terminal-Block Twisted-Pair Connection:
If your application requires you to connect one or two pair of bare wires to the Driver, you'll need to get into the internal terminal blocks. In a two-pair circuit, connect one pair of wires to XMT + and XMT- (transmit positive and negative) on the terminal block, making careful note of which color is positive and which color is negative.
Connect the other pair of wires to RCV + and RCV- (receive positive and negative) on the erminal block. Again make careful note of which color is positive and which is negative. Your completed cross-over cable should be pinned electrically as follows:
\qquad
XMT
RCV

+

RCV RCV XMT -

If there is a shield around the telephone cable, it may be connected to " G " on the

terminal block. We recommend connecting the shield at the computer end only to avoid
ground loops. A ground wire is not necessary to properly operate the Driver.

