




# **SPECIFICATIONS:**

Protocol: Synchronous, full duplex.

Speed: 1200 to 19,200 bps

Transmission Line: Two unconditioned twisted pair 19-26 AWG.

Serial Interface: EIA RS-232, CCITT V.24

Isolation: Minimum 1500 V RMS via custom transformers.

Surge Protection: 600 W power dissipation at 1 ms and response time of 1 picosecond.

<u>Control Signals:</u> CTS turns on 7 or 53 ms (switch-selectable) after the terminal raises RTS; DSR and DCD are constantly on.

Connectors: (1) DB25 male or female; (1) RJ-11 female connector.

<u>Power:</u> No power required; uses 6 VDC power from EIA data and control signals:

Pins 2.4.9 and 20

| DATA<br>RATE<br>(bps) | Distance Table in miles (km) |                  |               |  |
|-----------------------|------------------------------|------------------|---------------|--|
|                       | WIRE GAUGE                   |                  |               |  |
|                       | 19 AWG                       | 24 AWG           | 26 AWG        |  |
| 19,200                | 7.5 mi (12 km)               | 3.5 mi (5.6 km)  | 2.5 mi (4 km) |  |
| 9,600                 | 10 mi (16.1 km)              | 3.5 mi (5.6 km)  | 2.5 mi (4 km) |  |
| 4,800                 | 10 mi (16.1 km)              | 7 mi (11.3 km)   | 4 mi (6.4 km) |  |
| 2,400                 | 10 mi (16.1 km)              | 8.5 mi (13.7 km) | 5 mi (8.1 km) |  |
| 1,200                 | 11 mi (17.7 km)              | 8.5 mi (13.7 km) | 6 mi (9.7 km) |  |

# ME754A-M/F (also with optional Surge Protection MSP/FSP)

# **DESCRIPTION:**

The Mini-Driver 4W-S-CL is a miniature, synchronous short-range modem that uses the latest in VLSI technology to combine high-quality data transmission with compact size. The Mini Driver does not need any AC power or batteries to operate, and communicates up to 11 miles (17.7 km) in point-to-point environments. For maximum flexibility, the Mini Driver supports three clocking options: internal, external or receive loopback.

Supporting full-duplex transmission over two twisted pairs, the Mini Driver accommodates seven switch selectable data rates from 1200 to 19,200 bps. The Mini Driver's custom VLSI chip uses a separate filter for each data rate, rather than a single "compromise" filter. Transformer isolation allows the Mini Driver to operate between buildings without data disruption because of ground potential differences.

The -MSP and -FSP models are surge-protected versions of the Mini Driver, incorporating silicon avalanche diodes that provide 600 watts of protection per wire.

## **CONFIGURATION:**

The Mini Driver has six configuration switches that let you select clocking method, RTS/CTS delay and data rates.

All possible settings for the Mini Driver's configuration switches are presented in the summary table and descriptions below.

Switches1 and 2: Transmit Clock are used together to specify the clocking method. The Mini Driver can provide an internal clock (Pin 15), receive an external clock (from pin 24), or loop back a received clock.

| Switch 1 | Switch 2 | <u>Setting:</u>         |
|----------|----------|-------------------------|
| ON       | ON       | External Clock          |
| ON       | OFF      | External Clock          |
| OFF      | ON       | Internal Clock (default |
| OFF      | OFF      | Receive Loopback        |

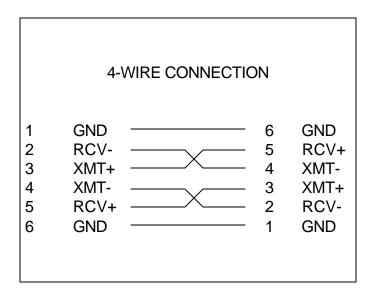
Switch 3: RTS/CTS Delay After request to send (RTS) is raised by the host terminal, the Mini Driver raises CTS after a slight delay in order to give the remote terminal time to receive an incoming signal. Depending on the type of environment, either 7 msec. or 53 msec can be selected.

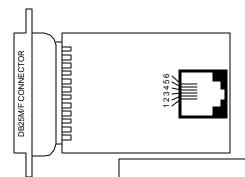
| Switch 3 | <u>Setting:</u>   |  |
|----------|-------------------|--|
| ON       | 7 msec. (default) |  |
| OFF      | 53 msec.          |  |

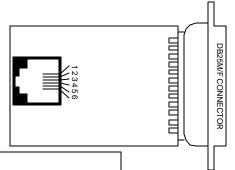
Switch 4 through 6: Data Rate

| Nate     |          |          |                 |
|----------|----------|----------|-----------------|
| Switch 4 | Switch 5 | Switch 6 | <u>Setting:</u> |
| ON       | ON       | ON       | 1200 bps        |
| ON       | ON       | OFF      | 2400 bps        |
| ON       | OFF      | ON       | 4800 bps        |
| OFF      | ON       | ON       | 7200 bps        |
| ON       | OFF      | OFF      | 9600 bps        |
| OFF      | ON       | OFF      | 14400 bps       |
| OFF      | OFF      | ON       | 19200 bps       |
| OFF      | OFF      | OFF      | 19200 bps       |
|          |          |          |                 |

Continued on next page:


# Installation:


Once the Mini Driver is properly configured, it is ready to connect to your system. The Mini Driver supports data-only communication between two RS-232 devices at a distances to 11 miles and data rates to 19.2 Kbps. There are two essential requirements for installing the Mini Driver:


- 1. These units work in pairs. Therefore, you must have one Mini Driver at each end of a two twisted-pair interface.
- 2. To function properly, the Mini Driver needs two twisted pairs of metallic wire. These pairs must be unconditioned, dry, metallic wire, between 19 and 26 AWG (the higher-number gauges may limit distance somewhat). Standard dialupt telephone circuits, or leased circuits that run through signal-equalization equipment, are not acceptable.

The RJ-11 connector on the Mini Driver's twisted-pair interface are pre-wired for a standard telco wiring environment. The signal/pin relationships are shown below. When connecting two Mini Drivers, you will need to use a "crossover cable". The figure below shows how a crossover cable should be constructed for an environment where both Mini Drivers use a 6-wire RJ-11 connector.

| PIN<br>1<br>2<br>3<br>4<br>5 | SIGNAL<br>GND<br>RCV-<br>XMT+<br>XMT-<br>RCV+ |
|------------------------------|-----------------------------------------------|
| 5                            | RCV+                                          |
| 6                            | GND                                           |







If there is a shield around the telephone cable, it may be connected to "G" on the terminal block. We recommend connecting the shield at the computer end only to avoid ground loops. A ground wire is not necessary to properly operate the Driver.